Deep Segmentation Architectures for Remote Sensing

本项目旨在对典型深度语义分割方法在遥感场景下的性能进行系统评估,为后续实验室在海洋遥感图像分割任务中的模型迁移与微调提供方法论支持与基准选择。通过对比当前主流语义分割框架——HRNet(CVPR 2019)、DeepLabV3+(CVPR 2018)与PSPNet(CVPR 2017)在多个遥感数据集上的表现,全面分析不同分割结构在空间分辨率保持、边界识别、类间差异建模等方面的优劣。

在实验设置中,分别采用ResNet-18、ResNet-50、ResNet-101作为DeepLabV3+与PSPNet的主干网络,HRNet部分选用HRNet-18、HRNet-18s与HRNet-48三种配置。实验覆盖LoveDA、Potsdam和Vaihingen三个典型遥感语义分割数据集,共完成27组模型训练与评估。

1
2
3
export CUDA_VISIBLE_DEVICES=1

CUDA_VISIBLE_DEVICES=-1 python tools/train.py ${CONFIG_FILE} [ARGS]

HRNet (CVPR 2019)

HRNet (CVPR 2019)

architecture

Architecture

high to low and low to high

[mmsegmentation/configs/hrnet/README.md at main · open-mmlab/mmsegmentation]

LoveDA

Method Backbone Crop Size Device aAcc mIoU mAcc
FCN HRNetV2p-W18-Small 512x512 RTX 3090 67.57 48.95 61.89
FCN HRNetV2p-W18 512x512 RTX 3090 68.23 51.02 53.83
FCN HRNetV2p-W48 512x512 RTX 3090 69.12 50.80 63.13

Potsdam

Method Backbone Crop Size Device aAcc mIoU mAcc
FCN HRNetV2p-W18-Small 512x512 RTX 3090 90.08 77.11 84.45
FCN HRNetV2p-W18 512x512 RTX 3090 90.38 77.12 84.19
FCN HRNetV2p-W48 512x512 RTX 3090 90.51 77.79 85.02

Vaihingen

Method Backbone Crop Size Device aAcc mIoU mAcc
FCN HRNetV2p-W18-Small 512x512 RTX 3090 89.76 72.54 80.31
FCN HRNetV2p-W18 512x512 RTX 3090 90.10 73.37 80.52
FCN HRNetV2p-W48 512x512 RTX 3090 90.12 73.68 8076

DeepLab V3+ (ECCV 2018)

DeepLab V3+ (ECCV 2018)

Encoder-Decoder

DeepLab v3+

Atrous DwConv

[mmsegmentation/configs/deeplabv3plus/README.md at main · open-mmlab/mmsegmentation]

LoveDA

Method Backbone Crop Size Device aAcc mIoU mAcc
DeepLabV3+ R-18-D8 512x512 RTX 3090 62.44 44.66 58.22
DeepLabV3+ R-50-D8 512x512 RTX 3090 67.26 48.76 60.03
DeepLabV3+ R-101-D8 512x512 RTX 3090 68.27 49.99 61.64

Potsdam

Method Backbone Crop Size Device aAcc mIoU mAcc
DeepLabV3+ R-18-D8 512x512 RTX 3090 90.16 77.29 84.77
DeepLabV3+ R-50-D8 512x512 RTX 3090 90.33 77.99 85.39
DeepLabV3+ R-101-D8 512x512 RTX 3090 90.59 78.16 84.17

Vaihingen

Method Backbone Crop Size Device aAcc mIoU mAcc
DeepLabV3+ R-18-D8 512x512 RTX 3090 89.58 72.35 80.44
DeepLabV3+ R-50-D8 512x512 RTX 3090 89.96 74.16 81.18
DeepLabV3+ R-101-D8 512x512 RTX 3090 90.06 73.52 80.72

PSPNet (CVPR 2017)

PSPNet (CVPR 2017)

  • CVPR 2017
  • CUHK, SenseTime

PSPNet

PSPNet

[mmsegmentation/configs/pspnet/README.md at main · open-mmlab/mmsegmentation]

LoveDA

Method Backbone Crop Size Device aAcc mIoU mAcc
PSPNet R-18-D8 512x512 RTX 3090 66.42 45.82 56.44
PSPNet R-50-D8 512x512 RTX 3090 68.07 49.38 60.60
PSPNet R-101-D8 512x512 RTX 3090 68.22 49.01 59.71

Potsdam

Method Backbone Crop Size Device aAcc mIoU mAcc
PSPNet R-18-D8 512x512 RTX 3090 90.09 77.43 85.23
PSPNet R-50-D8 512x512 RTX 3090 90.71 78.62 85.82
PSPNet R-101-D8 512x512 RTX 3090 68.22 49.01 59.71

Vaihingen

Method Backbone Crop Size Device aAcc mIoU mAcc
PSPNet R-18-D8 512x512 RTX 3090 89.54 72.53 79.78
PSPNet R-50-D8 512x512 RTX 3090 90.01 73.33 80.63
PSPNet R-101-D8 512x512 RTX 3090 90.07 71.71 78.68

Exp

HRNet

R18s

python tools/train.py ./configs/hrnet/fcn_hr18s_4xb4-80k_loveda-512x512.py (fcn_hr18s_4xb4-80k_loveda-512x512_20250604_101019)

fcn_hr18s_4xb4-80k_loveda-512x512.py

python tools/train.py ./configs/hrnet/fcn_hr18s_4xb4-80k_potsdam-512x512.py(fcn_hr18s_4xb4-80k_potsdam-512x512_20250604_101224)

fcn_hr18s_4xb4-80k_potsdam-512x512.py

python tools/train.py ./configs/hrnet/fcn_hr18s_4xb4-80k_vaihingen-512x512.py (fcn_hr18s_4xb4-80k_vaihingen-512x512_20250604_101158)

fcn_hr18s_4xb4-80k_vaihingen-512x512.py

R18

python tools/train.py ./configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py (fcn_hr18_4xb4-80k_loveda-512x512_20250604_100135)

fcn_hr18_4xb4-80k_loveda-512x512_20250604_100135

python tools/train.py ./configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py (fcn_hr18_4xb4-80k_potsdam-512x512_20250604_100329)

fcn_hr18_4xb4-80k_potsdam-512x512_20250604_100329

python tools/train.py ./configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py ( fcn_hr18_4xb4-80k_vaihingen-512x512_20250604_100356)

 fcn_hr18_4xb4-80k_vaihingen-512x512_20250604_100356

R48

python tools/train.py ./configs/hrnet/fcn_hr48_4xb4-80k_loveda-512x512.py ( fcn_hr48_4xb4-80k_loveda-512x512_20250604_101327)

 fcn_hr48_4xb4-80k_loveda-512x512_20250604_101327

python tools/train.py ./configs/hrnet/fcn_hr48_4xb4-80k_potsdam-512x512.py (fcn_hr48_4xb4-80k_potsdam-512x512_20250604_101611)

fcn_hr48_4xb4-80k_potsdam-512x512_20250604_101611

python tools/train.py ./configs/hrnet/fcn_hr48_4xb4-80k_vaihingen-512x512.py (fcn_hr48_4xb4-80k_vaihingen-512x512_20250604_101506)

fcn_hr48_4xb4-80k_vaihingen-512x512_20250604_101506

DeepLab V3+

R18

python tools/train.py ./configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py (deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512_20250604_100604)

deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py

python tools/train.py ./configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py (deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512_20250604_100639)

deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py

python tools/train.py ./configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py (deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512_20250604_100705)

deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py

R50

python tools/train.py ./configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py (deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512_20250604_145221)

deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512_20250604_145221

python tools/train.py ./configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py (deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512_20250604_145319)

deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512_20250604_145319

python tools/train.py ./configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py (deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512_20250604_165100)

deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512_20250604_165100

R101

python tools/train.py ./configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py (deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512_20250604_164955)

deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512_20250604_164955

python tools/train.py ./configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py (deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512_20250604_165024)

deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512_20250604_165024

python tools/train.py ./configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py (deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512_20250605_132237)

deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512_20250605_132237

PSPNet

R18

python tools/train.py ./configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py (pspnet_r18-d8_4xb4-80k_loveda-512x512_20250604_094150)

pspnet_r18-d8_4xb4-80k_loveda-512x512.py

python tools/train.py configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py (pspnet_r18-d8_4xb4-80k_potsdam-512x512_20250604_094350)

pspnet_r18-d8_4xb4-80k_potsdam-512x512.py

python tools/train.py configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py (pspnet_r18-d8_4xb4-80k_vaihingen-512x512_20250604_094520)

pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py

R50

python tools/train.py ./configs/pspnet/pspnet_r50-d8_4xb4-80k_loveda-512x512.py(pspnet_r50-d8_4xb4-80k_loveda-512x512_20250604_094757)

pspnet_r50-d8_4xb4-80k_loveda-512x512.py

python tools/train.py configs/pspnet/pspnet_r50-d8_4xb4-80k_potsdam-512x512.py (pspnet_r50-d8_4xb4-80k_potsdam-512x512_20250604_094853)

pspnet_r50-d8_4xb4-80k_potsdam-512x512.py

python tools/train.py configs/pspnet/pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py (pspnet_r50-d8_4xb4-80k_vaihingen-512x512_20250604_094948)

pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py

R101

python tools/train.py configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py

pspnet_r101-d8_4xb4-80k_loveda-512x512.py

python tools/train.py configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py

pspnet_r101-d8_4xb4-80k_potsdam-512x512.py

python tools/train.py ./configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py

pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py


Deep Segmentation Architectures for Remote Sensing
https://blog.cosmicdusty.cc/post/CV/SegmentationForRS/
作者
Murphy
发布于
2021年12月4日
许可协议